Диагностическое значение рентгенологических методов исследования. Рентгенологические методы исследования

Позвоночник человека представляет собой сложный анатомо-функциональный комплекс, состоящий из разнородных по тканевому составу, анатомическому строению и функциям компонентов. Тяжесть заболеваний и повреждений позвоночника, характер их течения, а также выбор методов лечения находятся в прямой зависимости от степени вовлечения в патологический процесс этих компонентов и характера возникающих в них патологических изменений. Вместе с тем естественной рентгеновской контрастностью обладает и, следовательно, отображается на обычных рентгенограммах только один компонент позвоночного столба - позвонки, что обусловливает необходимость применения для развернутой рентгенологической характеристики анатомо-функционального состояния позвоночника, помимо стандартного рентгеноанатомического, ряда специальных методов рентгенологического исследования (прямого и косвенного рентгенофункциональных, искусственного контрастирования и вычислительной рентгенодиагностики).

Основу рентгенологического исследования позвоночника составляет обычная рентгенография. Полный его комплекс включает в себя производство рентгенограмм при исследовании шейного отдела в пяти проекциях, грудного - в четырех и поясничного, так же как и шейного, - в пяти. При исследовании шейного отдела этими проекциями являются: две стандартные, т.е. задняя и боковая, две косые (под углом 45° к сагиттальной плоскости) для выведения суставных щелей межпозвоночных суставов и рентгенограмма "через рот", позволяющая получить изображение в задней проекции двух верхних шейных позвонков, перекрытых на стандартной задней рентгенограмме тенями лицевого черепа и затылочной кости. Исследование грудного отдела позвоночника, помимо стандартных, производится еще и в двух косых проекциях, выполняемых с той же целью, что и при исследовании шейного отдела, однако тело ребенка отклоняется от сагиттальной плоскости под углом не 45°, а 15°. Четыре из пяти проекций, используемых для исследования поясничного отдела позвоночника, аналогичны четырем первым проекциям для исследования шейного отдела. Пятой является боковая, выполняемая при отклонении центрального пучка лучей в каудальном направлении под углом 20-25° с центрацией его на LIV. Рентгенография в этой проекции производится с целью выявления признаков остеохондроза нижнепоясничных межпозвоночных дисков.

Применение всех вышеперечисленных проекций позволяет получить развернутую информацию об особенностях анатомического строения всех отделов позвонков, однако показания к их использованию относительно ограничены, так как рентгенодиагностика большинства наиболее распространенных патологических изменений костных компонентов позвоночного столба у детей может быть обеспечена на основании анализа рентгенограмм, произведенных только в двух стандартных проекциях - задней и боковой.

Интерпретация данных обычной рентгенографии позволяет получить информацию об особенностях пространственного положения позвоночника (или его отделов) во фронтальной и сагиттальной плоскостях и позвонков в горизонтальной, об особенностях формы, размеров, контуров и внутренней структуры позвонков, характере анатомических соотношений между ними, форме и высоте межпозвоночных пространств, а также о величине локального костного возраста позвоночника. Как известно, биологический возраст различных систем человеческого организма не всегда совпадает с паспортным. Наиболее точным показателем возрастного периода формирования костно-суставной системы является степень оссификации костей запястья и эпифизов коротких трубчатых костей кисти. Однако при некоторых заболеваниях того или иного отдела опорно-двигательного аппарата в детском возрасте отмечается изменение темпов его развития по сравнению с темпами развития скелета в целом. Степень выраженности этого изменения является одним из показателей тяжести вызвавшего их патологического процесса

В качестве рентгенологического показателя возрастного периода формирования позвоночника используются стадии оссификации апофизов тел позвонков (Рохлин Д. Г., Финкельштейн М. А., 1956; Дьяченко В. А., 1954). По данным наших исследований, в процессе оссификации этих апофизов могут быть выделены шесть четко различимых между собой стадий, каждая из которых в норме соответствует определенному паспортному возрасту. Несовпадение нормативного возраста выявленной при рентгеноанатомическом исследовании стадии оссификации апофизов тел позвонков с паспортным возрастом ребенка расценивается как показатель нарушения темпов формирования позвоночника, в случае меньшего, чем паспортный, возраста стадии - в сторону замедления, большего - в сторону ускорения.

Дополнительным средством получения информации для стандартного рентгеноанатомического анализа является послойная рентгенография, или, как ее чаще называют, томография, обеспечивающая возможность изучения позвонков по слоям без затрудняющего анализ проекционного наслоения изображений разноудаленных от пленки частей этих позвонков. Основным показанием к применению томографии при заболеваниях позвоночника является необходимость решения вопроса о наличии или отсутствии и характере патологических изменений костной структуры, не выявляющихся на обычных рентгенограммах за тенью реактивного склероза или в силу незначительности их размеров.

Диагностическая ценность томографических данных в значительной мере зависит от правильности выбора проекций для проведения исследования и правильности определения глубины томографических срезов. Мы считаем целесообразным производить послойную рентгенографию позвоночника в боковой проекции по следующим соображениям. В положении больного лежа на боку позвоночник на всем его протяжении располагается параллельно поверхности снимочного стола, что является одним из ведущих условий получения качественного томографического изображения, тогда как в положении лежа на спине из-за наличия физиологических изгибов позвоночника соблюдение этого условия не обеспечивается. Далее, на томограммах, произведенных в боковой проекции, отображаются на одном и том же срезе как передние, так и задние отделы позвонков, причем последние - в наиболее выгодном для анализа виде, что позволяет ограничиваться относительно небольшим количеством срезов. На томограммах же, произведенных в задней проекции, отображаются либо, только тела, либо отдельные части дужек позвонков. Кроме того, исследование в задней проекции исключает возможность использования для определения уровня среза такого удобного анатомического ориентира, как верхушки остистых отростков.

Значимость правильности выбора глубины томографического среза определяется тем, что показания к применению послойной рентгенографии возникают, как правило, при относительно небольших по размеру патологических очагах, вследствие чего ошибка в определении глубины среза на 1 или даже на 0,5 см может привести к непопаданию их изображения на пленку. Использование симультанной кассеты, позволяющей за один пробег томографа получить последовательное изображение нескольких слоев снимаемого объекта при любом заданном расстоянии между слоями, подкупает своей простотой и высокой вероятностью совпадения одного из срезов с расположением участка деструкции. Вместе с тем такой способ томографирования связан с неоправданным расходованием рентгеновских пленок, анализ изображения на большинстве которых не несет диагностической информации, поскольку на них отображаются неизмененные участки позвонков.

Гораздо более оправданной является так называемая избирательная томография, направленная на выделение строго определенного участка тела или дужки позвонка. Расчет глубины среза в случаях, когда участок патологически измененной костной ткани в какой-то мере виден на обычной задней рентгенограмме, производится на основании данных простой рентгенометрии. Измеряется расстояние от патологического очага до основания остистого отростка позвонка, затем после укладки больного измеряется расстояние от поверхности снимочного стола до легко определяемой пальпаторно верхушки остистого отростка подлежащего исследованию позвонка, и к полученной величине добавляется или из нее вычитается величина, равная измеренному по рентгенограмме расстоянию между патологическим очагом и основанием остистого отростка. Сказанное может быть проиллюстрировано на следующем конкретном примере. Педположим, что на обычной рентгенограмме выявлены увеличение размеров и изменение костной структуры правого верхнего суставного отростка одного из грудных позвонков. Величина расстояния между этим суставным отростком и основанием остистого на рентгенограмме равна 1,5 см. Расстояние от поверхности снимочного стола до верхушки остистого отростка исследуемого позвонка, измеренное после укладки больного на бок, равно 12 см. Отсюда глубина среза равна 12-1,5 (если больной лежит на правом боку) и 12+1,5 см (если лежит на левом).

При трудности определения местоположения участка деструкции или других патологических изменений костной ткани на задней рентгенограмме выявление его на томограмме обеспечивается, как правило, выполнением трех томографических срезов: на уровне основания остистого отростка и правого и левого суставных. На первом из названных томографических срезов отображаются остистые отростки на всем их протяжении просвет позвоночного канала и центральные отделы тел позвонков, на двух остальных - соответствующие верхние и нижние суставные отростки и боковые отделы дуг и тел позвонков.

Стандартное рентгейоанатомическое исследование, хотя и обладает достаточно высокими информативными возможностями, не обеспечивает всей полноты диагностики нерезко выраженных патологических состояний межпозвоночных дисков и нарушений функций позвоночного столба. Решение этих вопросов требует применения методов искусственного контрастирования и прямого и косвенного рентгенофункционального исследований.

Искусственное контрастирование межпозвонковых дисков - дискография - нашло применение, в основном, в диагностике и определении тяжести остеохондроза межпозвонковых дисков. В качестве контрастирующих веществ используются йодсодержащие соединения на жировой или водной основе в количестве 0,5-1 см3 на один межпозвоночный диск. Рентгенография позвоночника после контрастирования дисков производится в двух стандартных проекциях. Некоторые авторы рекомендуют, кроме того, выполнять рентгенограммы и в различных функциональных положениях.

В неизмененном или нерезко измененном межпозвонковом диске контрастируется только желатинозное ядро, отображающееся на задних рентгенограммах у взрослых и подростков в виде двух горизонтальных полос, у детей - в виде тени овальной или округлой формы. На боковой рентгенограмме желатинозное ядро межпозвонкового диска у взрослых имеет С-образную форму, у детей -треугольную.

Типичная для выраженного остеохондроза фрагментация межпозвонковых дискоз проявляется на дискограммах затеканием контрастирующего вещества в промежутки между фрагментами фиброзного кольца, а также уменьшением размеров и неправильностью формы желатинозного ядра. Используется дискография и для определения стадий перемещения желатинозного ядра у детей, страдающих структуральным сколи-

При наличии целого ряда диагностических достоинств контрастная дискография в детской клинике имеет ограниченные показания. Прежде всего, прижизненно и вне оперативного вмешательства введение контрастирующего вещества возможно только в диски шейного и средне- и нижнепоясничного отделов позвоночника. (Искусственное контрастирование межпозвонковых дисков грудного отдела исследователями производилось во время операции спондилодеза). Далее, остеохондроз межпозвонковых дисков у детей развивается относительно редко, и, наконец, по данным наших исследований, достоверная информация о состоянии дисков может быть получена на основании более простого в техническом отношении и атравматичного прямого рентгенофункционального исследования.

Информация о состоянии статико-динамических функций опорно-двигательного аппарата средствами рентгенологического исследования достигается двумя путями - на основании анализа на стандартных рентгенограммах деталей анатомического строения костей, отражающих величину функциональных нагрузок, приходящихся на тот или иной отдел костно-суставной системы, и путем рентгенографии суставов или позвоночника в процессе осуществления ими опорной или двигательной функций. Первый из этих способов называется методом косвенного рентгенофункционального исследования, второй - прямого.

Исследование состояния функций позвоночника на основании косвенных показателей включает в себя оценку архитектоники костной структуры и степени минерализации костной ткани. Последняя входит в комплекс косвенного рентгенофункционального исследования на том основании, что изменения ее являются следствием нарушения функций либо самой костной ткани, либо функций опорно-двигательного аппарата в целом. Основным объектом исследований при анализе костной структуры являются так называемые силовые линии, представляющие собой скопления одинаково ориентированных, интенсивных костных пластинок. Одинаково направленные силовые линии группируются в системы, количество и характер которых были описаны в гл. I. Архитектоника костной структуры, как это установлено многими исследователями, является функциональной системой высокой реактивности, оперативно отзывающейся изменением выраженности силовых линий или их переориентацией на любые, даже незначительные, изменения статико-динамических условий.

Наиболее легкая степень нарушения нормальной архитектоники костной структуры тел и дужек позвонков заключается в частичном или полном рассасывании силовых линий в тех отделах, нагрузка на которые уменьшилась, и в усилении их в отделах, испытывающих повышенную нагрузку. Более выраженные биомеханические нарушения, особенно расстройства нервной трофики, сопровождаются так называемым дедифференцированием костной структуры - полным рассасыванием всех силовых линий. Показателем резко выраженных изменений в характере распределения статико-динамических нагрузок в пределах позвоночного столба или одного из его отделов является переориентация силовых линий - вертикальная их направленность в телах позвонков и дугообразная - в дужках сменяется на горизонтальную.

Рутинным рентгеноанатомическим приемом выявления изменений степени минерализации костной ткани является визуальная сравнительная оценка оптических плотностей рентгеновского изображения пораженных и здоровых позвонков. Субъективность и приблизительность данного способа вряд ли требуют особых доказательств. Объективным способом рентгенологической оценки степени минерализации костей является фотоденситометрия, сущность которой заключается в проведении фотометрии оптической плотности рентгеновского изображения позвонков и сравнения полученных показателей с показателями фотометрии эталона нормы. Для обеспечения достоверности фотоденситометрической диагностики остеопороза или остеосклероза эталон нормы должен удовлетворять трем требованиям: 1) оптическая плотность его рентгеновского изображения должна быть соотносима с оптической плотностью рентгеновского изображения позвонков; 2) эталон должен содержать в себе образцы оптической плотности нормальной кости различной толщины (для обеспечения количественной характеристики изменений минеральной насыщенности); 3) эталон должен иметь толщину, позволяющую помещать его во время рентгенографии под мягкие ткани туловища без нарушения этим правильности укладки и причинения неприятных ощущений ребенку. В наибольшей степени удовлетворяют этим условием эталоны из искусственных материалов.

Создание градаций оптической плотности эталона достигается путем придания ему клиновидной или ступенчатой формы. Рентгенограммы позвоночника в случае предполагающегося фотоденситометрического исследования производятся с подкладкой эталона под мягкие ткани поясничной области для обеспечения идентичности условий экспозиции позвонков и эталона и условий проявления рентгеновской пленки. Качественная оценка минерализации костной ткани позвонков производится путем сравнения показателей фотометрии оптической плотности их рентгеновского изображения и рентгеновского изображения участка эталона, содержащего образец оптической плотности нормальной костной ткани той же толщины. При выявлении разности показателей, свидетельствующей об отклонениях от нормы в степени минерализации позвонков, проводится дополнительная фотометрия эталона с целью определения больше или меньше должной оптическая плотность исследуемого позвонка (или позвонков) и какой конкретно толщине нормальной костной ткани она соответствует.

Наиболее удобным видом количественной характеристики изменений минеральной насыщенности позвонков (но не ее абсолютной величины) является выраженное в процентах отношение ее к должной. Толщина тела позвонка, измеренная по рентгенограмме, произведенной в противоположной проекции, принимается за 100%, толщина нормальной кости, которой соответствует оптическая плотность рентгеновского изображения позвонка,- за х %.

Предположим, оптическая плотность тела позвонка на боковой рентгенограмме, имеющего фролтальный размер, равный 5 см, соответствует оптической плотности нормальной кости толщиной 3 см. Составляется следующая пропорция: 5 см - 100%, 3 см - х%

Отсюда степень минеральной насыщенности костной ткани позвонка составляет от должной = 60%

Наиболее технически совершенным средством получения информации о процессе осуществления двигательной функции является кинорентгенография, т.е. киносъемка с экрана рентгеновского изображения движущегося позвоночника. Однако для целей рентгенодиагностики нарушения функций дискосвязочного аппарата позвоночного столба кинорентгенография с успехом может быть заменена обычной рентгенографией, произведенной в нескольких, рационально выбранных фазах движения. Киносъемка, как известно, производится со скоростью 24 кадра в секунду, а при использовании "лупы времени" - с еще большей скоростью. Это означает, что промежуток времени, проходящий между экспозицией двух соседних кадров, равняется минимум,54 с. За столь короткое время соотношения между телами и дужками позвонков не успевают заметно измениться, и на нескольких соседних кадрах получаются практически идентичные изображения. Таким образом, нет необходимости изучать все полученные кадры, достаточно провести анализ только некоторых из них. Более того, количество кадров, необходимых для характеристики двигательной функции, относительно невелико. Кинорентгенография применялась преимущественно с целью определения нормального объема подвижности позвоночника. Полученные при этом данные практически не отличались от данных, полученных авторами, применявшими для той же цели обычную рентгенографию в двух крайних положениях движения позвоночника - сгибания и разгибания или боковых наклонов.

По данным наших исследований, необходимый и достаточный объем информации о состоянии межпозвоночных дисков и двигательной функции позвоночника или его отделов может быть получен на основании анализа рентгенограмм, произведенных в трех функциональных положениях: при физиологической разгрузке, т.е. в положении больного лежа при стандартной укладке, при статической нагрузке, т.е. в положении больного стоя, и в крайних фазах свойственных позвоночнику движений. Выбор проекций для рентгенографии (задняя или боковая), а также количество снимков в третьем функциональном положении (в обоих крайних положениях того или иного движения или только в одном из них) определяются ведущей направленностью исследования (выявление нарушений функций межпозвоночных дисков, нарушения стабилизирующих функций дискосвязочного аппарата, определение объема подвижности позвоночника или его отделов), а также плоскостью максимального проявления -исследуемых патологических изменений.

Обязательным условием выполнения рентгенограмм при проведении прямого рентгенофункционального исследования является соблюдение идентичности кожно-фокусного расстояния, положения фронтальной или сагиттальной плоскости тела больного по отношению к поверхности снимочного стола и идентичности центрации центрального пучка рентгеновских лучей. Необходимость соблюдения этих условий вызвана тем, что интерпретация данных прямого рентгенофункционального исследования включает в себя сравнительный анализ ряда линейных величин и местоположения ряда рентгеноанатомических ориентиров, находящихся в прямой зависимости от условий осуществления рентгенографии.

Рентгенофункциональная диагностика состояния межпозвоночных дисков основывается на оценке их эластических свойств, состояния двигательной и стабилизирующей функций. Оценка первых двух показателей производится путем сравнительного анализа результатов рентгенометрии высоты парных краевых отделов межпозвоночных пространств (правого и левого или переднего и заднего) при различных условиях статико-динамических нагрузок. Состояние стабилизирующей функции определяется на основании анализа соотношений между телами позвонков в различных функциональных положениях.

Показателями нормальных эластических свойств диска являются равномерное увеличение их высоты на рентгенограммах, произведенных в положении больного лежа, по сравнению с высотой на рентгенограммах, произведенных при статической нагрузке, не менее чем на 1 мм и амплитуда колебаний высоты краевых отделов диска от максимального сжатия до максимального расправления (при активных движениях туловища), равная 3-4 мм в грудном отделе позвоночника и 4-5 мм - в поясничном.

Рентгенофункциональным признаком нормальной двигательной функции диска является одинаковая величина увеличения и уменьшения высоты его краевых отделов при переходе тела из одного крайнего положения движения в какой-либо плоскости в другое, или, иными словами, возникновение на рентгенограммах, произведенных, например, при боковых наклонах вправо и влево, клиновидной деформации Дисков, совершенно идентичной по количественным показателям, но противоположной направленности.

Общеизвестно, что, помимо обеспечения движений позвоночника, межпозвонковые Диски обладают также стабилизирующей функцией, полностью исключая смещения тел позвонков относительно друг друга по ширине. Отсюда рентгенофункциональным признаком нарушения стабилизирующей функции диска является стабильное или появляющееся только при движении позвоночника смещение тела одного или нескольких позвонков по отношению к нижележащему. Степень этого смещения ввиду наличия костных ограничителей (почти вертикально расположенных суставных отростков) невелика (не более 2-2,5 мм) и выявляется только при тщательном рентгеноанатомическом анализе.

Каждому из видов патологической перестройки межпозвонковых дисков (остеохондроз, фиброз, дислокация желатинозного ядра, избыточная растяжимость) присущ свой комплекс нарушений функций, что позволяет осуществлять их рентгенодиагностику без применения контрастной дискографии методом прямого рентгенофункционального исследования.

Остеохондроз межпозвонковых дисков

Рентгенофункциональный синдром ранних его стадий складывается из снижения эластичности межпозвонкового диска и одностороннего нарушения двигательной функции, поскольку патологи ческий процесс вначале носит чаще всего сегментарный характер. Под влиянием физиологической разгрузки величина пораженного диска увеличивается на меньшую величину, чем непораженного. На рентгенограммах, произведенных при наклоне тела в сторону, противоположную расположению пораженного сегмента диска (например, вправо при поражении левой части диска), высота этого сегмента увеличивается на меньшую величину, чем симметричного ему, в данном случае правого, при обратной направленности наклона. Выраженный, тотальный остеохондроз проявляется рентгенофункциональными признаками. Помимо отсутствия реакций на физиологическую разгрузку, уменьшенной амплитуды колебаний краевых отделов, выявляются признаки патологической подвижности между телами и суставными отростками позвонков.

Фиброз межпозвонковых дисков

Рентгенофункциональный синдром этого вида патологической перестройки диска складывается из рентгенофункциональн ых признаков резкого снижения эластичности и почти полного отсутствия двигательной функции (форма диска при движениях туловища практически не меняется). Стабилизирующая функция диска сохраняется полностью, что отличает рентгенофункциональный синдром фиброза от рентгенофункциональных проявлений выраженного остехондроза.

Дислокация желатинозного ядра

Процесс перестройки межпозвонкового диска проходит три основные стадии: частичное перемещение желатинозного ядра, характеризующееся вначале незначительным, а затем и выраженным изменением его формы при сохранении нормального расположения; полное перемещение желатинозного ядра из центральных отделов к одному из краев диска; дегенеративно-дистрофическое поражение по типу фиброза или остеохондроза. Частичное перемещение желатинозного ядра характеризуется клиновидностью межпозвонкового пространства на рентгенограмме, произведенной в положении стоя, за счет увеличения по сравнению с должной высоты его на стороне, в которую направлена дислокация ядра. Эластические свойства диска не нарушены. При наклоне тела в сторону основания клина высота этой части диска хотя несколько и уменьшается, но остается больше должной. Двигательная функция противоположной части диска не нарушена, под влиянием наклона высота ее превышает должную.

Полное перемещение желатинозного ядра

Клиновидность диска выражена в большей степени (на рентгенограмме, произведенной при статической нагрузке) и обусловлена не только увеличением высоты его со стороны основания клина, но и уменьшением по сравнению с должной со стороны его вершины. Эластичность отделов диска, расположенных у вершины клина, снижена - при наклоне в сторону основания клина высота сниженных отделов диска увеличивается незначительно и не достигает должной. Реакция на этот наклон расширенной части диска такая же, как и при частичном перемещении желатинозного ядра, однако сопротивление к сжатию выражено в еще большей степени.

Избыточная растяжимость межпозвонковых дисков

Рентгенофункциональный синдром этого вида патологии межпозвонковых дисков складывается из рентгенофункциональных признаков патологической подвижности между телами позвонков, сочетающейся с превышающей нормальные значения амплитудой колебания высоты краевых отделов диска от максимального сжатия до максимального растяжения в крайних фазах того или иного движения позвоночника, что отличает рентгенофункциональный синдром повышенной растяжимости диска от рентгенофункциональных проявлений выраженного остеохондроза.

Объем подвижности позвоночника во фронтальной плоскости определяется по суммарной величине образующихся при наклонах вправо и влево дугообразных искривлений, измеренных по методике Кобба или Фергюссона. Нормальный объем боковой подвижности грудного отдела позвоночника у детей равняется, по данным наших исследований, 20-25° (по 10-12° в каждую сторону), поясничного - 40-50° (по 20-25° вправо и влево).

Объем подвижности в сагиттальной плоскости характеризуется разницей величин грудного кифоза и поясничного лордоза на рентгенограммах, произведенных в крайних положениях сгибания и разгибания позвоночника. Величина его в норме в грудном отделе позвоночника составляет 20-25°, в поясничном - 40°.

Объем ротационной подвижности (при вращении тела впрат во и влево) определяется как сумма углов поворота, измеренных на рентгенограммах, произведенных при повороте тела вокруг вертикальной оси вправо и влево. Нормальный объем этого вида подвижности двигательных сегментов позвоночника равен 30° (по 15° в каждую из сторон).

Нарушения функций мышечно-связочного аппарата позвоночника имеют три основных варианта: нарушение стабилизирующей функции, фиброзное перерождение мышц и связок и нарушение мышечного равновесия.

Рентгенофункциональными признаками нарушения стабилизирующей функции связочного аппарата являются стабильные или возникающие только в процессе осуществления движений нарушения соотношений между телами позвонков и в межпозвонковых суставах. Основная причина патологической подвижности между телами позвонков заключается в нарушении стабилизирующей функции межпозвоночных дисков, но поскольку в ограничении смещений тел позвонков по ширине принимают участие и связки, появление патологической подвижности свидетельствует о нарушении и их функций. Нарушения соотношений в межпозвонковых суставах из-за особенностей пространственного расположения их в грудном отделе позвоночника и вариабельности расположения в поясничном достоверно диагностируются на рентгенограммах, произведенных в стандартных проекциях, только при значительной степени выраженности. Рентгенологическим признаком выраженных подвывихов является соприкосновение верхушки нижнего суставного отростка вышележащего позвонка с верхней поверхностью дуги нижележащего. Выявление более тонких нарушений стабильности межпозвонковых суставов достигается проведением прямого рентгенофункционального исследования в косых проекциях.

Нарушение мышечного равновесия и фиброзное перерождение связок могут быть определе ны средствами прямого рентгенофункционального исследования только на основании учета комплекса показателей. Ведущим рентгенофункциональным признаком этих изменений является ограничение подвижности позвоночника в одной или нескольких плоскостях. Вместе с тем признак этот не является патогномоничным, поскольку объем подвижности позвоночника определяется состоянием функций не только мышц и связок, но и межпозвонковых дисков. Исходя из этого, ограничение подвижности позвоночника или отдельных его сегментов может рассматриваться как рентгенофункциональный показатель мышечно-связочных контрактур только при условии сочетания с рентгенофункциональными признаками нормальной эластичности межпозвонковых дисков.

Мышечно-связочные контрактуры, ограничивая двигательную функцию позвоночника, создают тем самым препятствия для проявления в полной мере эластических свойств дисков, особенно для расправления краевых его отделов при осуществлении движений. Учитывая это обстоятельство, достаточным основанием для заключения об отсутствии выраженной перестройки межпозвонковых дисков по типу фиброза, врожденной гипоплазии или полной дислокации желатинозного ядра являются увеличение их высоты при физиологической нагрузке (по сравнению с высотой на рентгенограммах, произведенных в положении больного стоя) и симметричность сжатия и расправления краевых отделов диска при боковых наклонах или сгибании и разгибании. Остеохондроз межпозвонковых дисков ограничения подвижности не вызывает.

Повреждения и заболевания позвоночника могут оказывать патологическое воздействие на оболочки и корешки спинного мозга, а в отдельных случаях - и на сам спинной мозг вследствие распространения в соответствующем направлении опухолевых масс, образования краевых костных разрастаний при остеохондрозе межпозвонковых дисков, смещения в дорсальном направлении свободных задних полупозвонков или фрагментов поврежденных тел и дужек. Данные о наличии предпосылок для возникновения неврологических расстройств могут быть получены при анализе обычных рентгенограмм на основании определенной направленности краевых костных разрастаний, локального уменьшения расстояния от задней поверхности тел позвонков до основания остистых отростков (на боковой рентгенограмме) или проецирования на фоне спинномозгового канала костных фрагментов, однако достоверное заключение может быть вынесено только на основании интерпретации данных контрастной миелографии или перидурографии.

При производстве миелографии контрастирующее вещество вводится в межоболочечное пространство путем спинномозговой пункции на уровне нижнепоясничных позвонков (после предварительного удаления 5 мл спинномозговой жидкости). При производстве перидурографии контрастное вещество вводят в периоболочечное пространство заднекрестцовым доступом. Каждый из названных способов рентгенологического исследования имеет свои достоинства и недостатки.

Миелография создает хорошие условия для изучения формы и фронтального и сагиттального размеров спинного мозга и тем самым для выявления его сдавлений, смещений внутри позвоночного канала, объемных процессов и т. д. С помощью этого метода достигается контрастирование корешков спинномозговых нервов (Ahu Н., Rosenbaum А., 1981). Вместе с тем процессы, вызывающие раздражающее, а не сдавливающее воздействие на спинной мозг, выявляются на миелограммах менее отчетливо. Кроме того, введение контрастирующего вещества в межоболочечное пространство спинного мозга может вызывать ряд нежелательных побочных явлений (тошноту, головную боль и даже спинальную эпилепсию). Подобные осложнения отмечаются у 22-40% больных (Langlotz М. et al., 1981). Производство миелографии при вертикальном положении тела больного снижает число этих осложнений, но не устраняет их полностью.

Перидурография, наоборот, имеет несомненные преимущества перед миелографией в диагностике задних грыж межпозвонкового диска, нерезко выраженных краевых костных разрастаний, неоссифицированных хрящевых экзостозов, направленных в сторону позвоночного канала или корешков спинных нервов; не дает нежелательных побочных явлений, но значительно менее информативна в отношении состояния спинного мозга.

Выявление в рентгеновском изображении не обладающих естественной контрастностью структур позвоночного канала достигается введением контрастирующих веществ, имеющих как более высокую, так и более низкую молекулярную массу, чем мягкие ткани. Несомненным преимуществом первых из них является обеспечение высокой контрастности получаемого изображения, однако введение необходимого для заполнения межоболочечного или периоболочечного пространства количества "непрозрачного" контрастирующего вещества может привести к перекрыванию его тенью изображения небольших по размерам мягкотканных образований. Введение же малых количеств таит в себе опасность неравномерного распределения контрастного вещества и создания ложного впечатления наличия патологических изменений. Контрастирующие вещества с более низкой молекулярной массой (газы) вследствие их "прозрачности" для рентгеновского излучения не вызывают перекрывания спаек, хрящевых фрагментов; равномерное выполнение контрастируемых пространств происходит при введении даже небольших количеств газа. Недостатком этого способа контрастирования является малая контрастность получаемого изображения.

Количество контрастирующего вещества колеблется в зависимости от возраста ребенка от 5 до 10 мл. Введение его и следующая за этим рентгенография позвоночника производятся на снимочном столе с приподнятым головным концом - при пневмоперидурографии для лучшего распространения газа в краниальном направлении, при применении жидких контрастирующих веществ, оказывающих раздражающее действие на головной мозг - с обратной целью, т.е. с целью депонирования контрастного вещества на ограниченном протяжении.

Рентгенограммы позвоночника после контрастирования спинномозгового канала производятся, как правило, в двух стандартных проекциях - переднезадней и боковой, однако при необходимости рентгенографию выполняют в боковой проекции в положении максимального разгибания позвоночника.

Рентгенологические методы исследования

1. Понятие рентгеновского излучения

Рентгеновским излучением называют электромагнитные волны с длиной приблизительно от 80 до 10~ 5 нм. Наиболее длинноволновое рентгеновское излучение перекрывается коротковолновым ультрафиолетовым, коротковолновое - длинноволновым Y-излучением. По способу возбуждения рентгеновское излучение подразделяют на тормозное и характеристическое.

Наиболее распространенным источником рентгеновского излучения является рентгеновская трубка, которая представляет собой двухэлектродный вакуумный прибор. Подогревной катод испускает электроны. Анод, называемый часто антикатодом, имеет наклонную поверхность, для того чтобы направить возникающее рентгеновское излучение под углом к оси трубки. Анод изготовлен из хорошо теплопроводящего материала для отвода теплоты, образующейся при ударе электронов. Поверхность анода выполнена из тугоплавких материалов, имеющих большой порядковый номер атома в таблице Менделеева, например из вольфрама. В отдельных случаях анод специально охлаждают водой или маслом.

Для диагностических трубок важна точечность источника рентгеновских лучей, чего можно достигнуть, фокусируя электроны в одном месте антикатода. Поэтому конструктивно приходится учитывать две противоположные задачи: с одной стороны, электроны должны попадать на одно место анода, с другой стороны, чтобы не допустить перегрева, желательно распределение электронов по разным участкам анода. В качестве одного из интересных технических решений является рентгеновская, трубка с вращающимся анодом. В результате торможения электрона (или иной заряженной частицы) электростатическим полем атомного ядра и атомарных электронов вещества антикатода возникает тормозное рентгеновское излучение. Механизм его можно пояснить следующим образом. С движущимся электрическим зарядом связано магнитное поле, индукция которого зависит от скорости электрона. При торможении уменьшается магнитная индукция и в соответствии с теорией Максвелла появляется электромагнитная волна.

При торможении электронов лишь часть энергии идет на создание фотона рентгеновского излучения, другая часть расходуется на нагревание анода. Так как соотношение между этими частями случайно, то при торможении большого количества электронов образуется непрерывный спектр рентгеновского излучения. В связи с этим тормозное излучение называют также и сплошным.

В каждом из спектров наиболее коротковолновое тормозное излучение возникает тогда, когда энергия, приобретенная электроном в ускоряющем поле, полностью переходит в энергию фотона.

Коротковолновое рентгеновское излучение, обычно, обладает большей проникающей способностью, чем длинноволновое, и называется жестким, а длинноволновое - мягким. Увеличивая напряжение на рентгеновской трубке, изменяют спектральный состав излучения. Если увеличить температуру накала катода, то возрастут эмиссия электронов и сила тока в трубке. Это приведет к увеличению числа фотонов рентгеновского излучения, испускаемых каждую секунду. Спектральный состав его не изменится. Увеличивая напряжение на рентгеновской трубке, можно заметить на фоне сплошного спектра появление линейчатого, который соответствует характеристическому рентгеновскому излучению. Он возникает вследствие того, что ускоренные электроны проникают вглубь атома и из внутренних слоев выбивают электроны. На свободные места переходят электроны с верхних уровней, в результате высвечиваются фотоны характеристического излучения. В отличие от оптических спектров характеристические рентгеновские спектры разных атомов однотипны. Однотипность этих спектров обусловлена тем, что внутренние слои у разных атомов одинаковы и отличаются лишь энергетически, так как силовое воздействие со стороны ядра увеличивается по мере возрастания порядкового номера элемента. Это обстоятельство приводит к тому, что характеристические спектры сдвигаются в сторону больших частот с увеличением заряда ядра. Такая закономерность известна как закон Мозли.

Есть еще одна разница между оптическими и рентгеновскими спектрами. Характеристический рентгеновский спектр атома не зависит от химического соединения, в которое этот атом входит. Так, например, рентгеновский спектр атома кислорода одинаков для О, О 2 и Н 2 О, в то время как оптические спектры этих соединений существенно различны. Эта особенность рентгеновского спектра атома послужила основанием и для названия характеристическое.

Характеристическое излучение возникает всегда при наличии свободного места во внутренних слоях атома независимо от причины, которая его вызвала. Так, например, характеристическое излучение сопровождает один из видов радиоактивного распада, который заключается в захвате ядром электрона с внутреннего слоя.

Регистрация и использование рентгеновского излучения, а также воздействие его на биологические объекты определяются первичными процессами взаимодействия рентгеновского фотона с электронами атомов и молекул вещества.

В зависимости от соотношения энергии фотона и энергии ионизации имеют место три главных процесса

Когерентное (классическое) рассеяние. Рассеяние длинноволнового рентгеновского излучения происходит в основном без изменения длины волны, и его называют когерентным. Оно возникает если энергия фотона меньше энергии ионизации. Так как в этом случае энергия фотона рентгеновского излучения и атома не изменяется, то когерентное рассеяние само по себе не вызывает биологического действия. Однако при создании защиты от рентгеновского излучения следует учитывать возможность изменения направления первичного пучка. Этот вид взаимодействия имеет значение для рентгенструктурного анализа.

Некогерентное рассеяние (эффект Комптона). В 1922 г А.Х. Комптон, наблюдая рассеяние жестких рентгеновских лучей, обнаружил уменьшение проникающей способности рассеянного пучка по сравнению с падающим. Это означало, что длина волны рассеянного рентгеновского излучения больше, чем падающего. Рассеяние рентгеновского излучения с изменением длины волны называют некогерентным, а само явление - эффектом Комптона. Он возникает, если энергия фотона рентгеновского излучения больше энергии ионизации. Это явление обусловлено тем, что при взаимодействии с атомом энергия фотона расходуется на образование нового рассеянного фотона рентгеновского излучения, на отрыв электрона от атома (энергия ионизации А) и сообщение электрону кинетической энергии.

Существенно, что в этом явлении наряду с вторичным рентгеновским излучением (энергия hv" фотона) появляются электроны отдачи (кинетическая энергия £ к электрона). Атомы или молекулы при этом становятся ионами.

Фотоэффект. При фотоэффекте рентгеновское излучение поглощается атомом, в результате чего вылетает электрон, а атом ионизируется (фотоионизация). Если энергия фотона недостаточна для ионизации, то фотоэффект может проявляться в возбуждении атомов без вылета электронов.

Перечислим некоторые процессы, наблюдаемые при действии рентгеновского излучения на вещество.

Рентгенолюминесценция – свечение ряда веществ при рентгеновском облучении. Такое свечение платиносинеродистого бария позволило Рентгену открыть лучи. Это явление используют для создания специальных светящихся экранов с целью визуального наблюдения рентгеновского излучения, иногда для усиления действия рентгеновских лучей на фотопластинку.

Известно химическое действие рентгеновского излучения, например образование перекиси водорода в воде. Практически важный пример - воздействие на фотопластинку, что позволяет фиксировать такие лучи.

Ионизирующее действие проявляется в увеличении электропроводимости под воздействием рентгеновских лучей. Это свойство используют в дозиметрии для количественной оценки действия этого вида излучения.

Одно из наиболее важных медицинских применений рентгеновского излучения - просвечивание внутренних органов с диагностической целью (рентгенодиагностика).

Рентгенологический метод - это способ изучения строения и функции различных органов и систем, основанный на качественном и/или количественном анализе пучка рентгеновского излучения, прошедшего через тело человека. Рентгеновское излучение, возникшее в аноде рентгеновской трубки, направляют на больного, в теле которого оно частично поглощается и рассеивается, а частично проходит насквозь. Датчик преобразователя изображения улавливает прошедшее излучение, а преобразователь строит видимый световой образ, который воспринимает врач.

Типичная рентгеновская диагностическая система состоит из рентгеновского излучателя (трубки), объекта исследования (пациента), преобразователя изображения и врача-рентгенолога.

Для диагностики используют фотоны с энергией порядка 60-120 кэВ. При этой энергии массовый коэффициент ослабления в основном определяется фотоэффектом. Его значение обратно пропорционально третьей степени энергии фотона (пропорционально X 3), в чем проявляется большая проникающая способность жесткого излучения и пропорционально третьей степени атомного номера вещества-поглотителя. Поглощение рентгеновских лучей почти не зависит от того, в каком соединении атом представлен в веществе, поэтому можно легко сравнить массовые коэффициенты ослабления кости, мягкой ткани или воды. Существенное различие поглощения рентгеновского излучения разными тканями позволяет в теневой проекции видеть изображения внутренних органов тела человека.

Современная рентгенодиагностическая установка представляет собой сложное техническое устройство. Оно насыщено элементами телеавтоматики, электроники, электронно-вычислительной техники. Многоступенчатая система защиты обеспечивает радиационную и электрическую безопасность персонала и больных.

Рентгенодиагностические аппараты принято делить на универсальные, позволяющие производить рентгеновское просвечивание и рентгеновские снимки всех частей тела, и аппараты специального назначения. Последние предназначены для выполнения рентгенологических исследований в неврологии, челюстно-лицевой хирургии и стоматологии, маммологии, урологии, ангиологии. Созданы также специальные аппараты для исследования детей, для массовых проверочных исследований (флюорографы), для исследований в операционных. Для рентгеноскопии и рентгенографии больных в палатах и реанимационном отделении применяют передвижные рентгеновские установки.

В состав типового рентгенодиагностического аппарата входят питающее устройство, пульт управления, штатив и рентгеновская трубка. Она-то, собственно, и является источником излучения. Установка получает питание из сети в виде переменного тока низкого напряжения. В высоковольтном трансформаторе сетевой ток преобразуется в переменный ток высокого напряжения. Чем сильнее поглощает исследуемый орган излучение, тем интенсивнее тень, которую он отбрасывает на рентгеновский флюоресцентный экран. И, наоборот, чем больше лучей пройдет через орган, тем слабее его тень на экране.

Для того чтобы получить дифференцированное изображение тканей, примерно одинаково поглощающих излучение, применяют искусственное контрастирование. С этой целью в организм вводят вещества, которые поглощают рентгеновское излучение сильнее или, наоборот, слабее, чем мягкие ткани, и тем самым создают достаточный контраст по отношению к исследуемым органам. Вещества, задерживающие излучение сильнее, чем мягкие ткани, называют рентгенопозитивными. Они созданы на основе тяжелых элементов - бария или йода. В качестве же рентгенонегативных веществ используют газы: закись азота, углекислый газ, кислород, воздух. Основные требования к рентгеноконтрастным веществам очевидны: их максимальная безвредность (низкая токсичность), быстрое выведение из организма.

Существуют два принципиально различных способа контрастирования органов. Один из них заключается в прямом (механическом) введении контрастного вещества в полость органа - в пищевод, желудок, кишечник, в слезные или слюнные протоки, желчные пути, мочевые пути, в полость матки, бронхи, кровеносные и лимфатические сосуды. В других случаях контрастное вещество вводят в полость или клетчаточное пространство, окружающее исследуемый орган (например, в забрюшинную клетчатку, окружающую почки и надпочечники), или путем пункции - в паренхиму органа.

Второй способ контрастирования основан на способности некоторых органов поглощать из крови введенное в организм вещество, концентрировать и выделять его. Этот принцип - концентрации и элиминации - используют при рентгенологическом контрастировании выделительной системы и желчных путей.

В некоторых случаях рентгенологическое исследование проводят одновременно с двумя рентгеноконтрастными средствами. Наиболее часто таким приемом пользуются в гастроэнтерологии, производя так называемое двойное контрастирование желудка или кишки: в исследуемую часть пищеварительного канала вводят водную взвесь сульфата бария и воздух.

Можно выделить 5 типов приемников рентгеновского излучения: рентгеновскую пленку, полупроводниковую фоточувствительную пластину, флюоресцирующий экран, рентгеновский электронно-оптический преобразователь, дозиметрический счетчик. На них соответственно построены 5 общих методов рентгенологического исследования: рентгенография, электрорентгенография, рентгеноскопия, рентгенотелевизионная рентгеноскопия и дигитальная рентгенография (в том числе компьютерная томография).

2. Рентгенография (рентгеновская съемка)

Рентгенография - способ рентгенологического исследования, при котором изображение объекта получают на рентгеновской пленке путем ее прямого экспонирования пучком излучения.

Пленочную рентгенографию выполняют либо на универсальном рентгеновском аппарате, либо на специальном штативе, предназначенном только для съемки. Пациент располагается между рентгеновской трубкой и пленкой. Исследуемую часть тела максимально приближают к кассете. Это необходимо, чтобы избежать значительного увеличения изображения из-за расходящегося характера пучка рентгеновского излучения. Кроме того, это обеспечивает необходимую резкость изображения. Рентгеновскую трубку устанавливают в таком положении, чтобы центральный пучок проходил через центр снимаемой части тела и перпендикулярно к пленке. Исследуемый отдел тела обнажают и фиксируют специальными приспособлениями. Все остальные части тела покрывают защитными экранами (например, просвинцованной резиной) для снижения лучевой нагрузки. Рентгенографию можно производить в вертикальном, горизонтальном и наклонном положении больного, а также в положении на боку. Съемка в разных положениях позволяет судить о смещаемости органов и выявлять некоторые важные диагностические признаки, например растекание жидкости в плевральной полости или уровни жидкости в петлях кишечника.

Снимок, на котором изображена часть тела (голова, таз и др.) или весь орган (легкие, желудок), называют обзорным. Снимки, на которых получают изображение интересующей врача части органа в оптимальной проекции, наиболее выгодной для исследования той или иной детали, именуют прицельными. Их нередко производит сам врач под контролем просвечивания. Снимки могут быть одиночными или серийными. Серия может состоять из 2-3 рентгенограмм, на которых зафиксированы разные состояния органа (например, перистальтика желудка). Но чаще под серийной рентгенографией понимают изготовление нескольких рентгенограмм в течение одного исследования и обычно за короткий промежуток времени. Например, при артериографии производят с помощью специального устройства - сериографа - до 6-8 снимков в секунду.

Среди вариантов рентгенографии заслуживает упоминания съемка с прямым увеличением изображения. Увеличения достигают тем, что рентгеновскую кассету отодвигают от объекта съемки. В результате на рентгенограмме получается изображение мелких деталей, неразличимых на обычных снимках. Эту технологию можно использовать только при наличии специальных рентгеновских трубок, имеющих очень малые размеры фокусного пятна - порядка 0,1 - 0,3 мм 2 . Для изучения костно-суставной системы оптимальным считается увеличение изображения в 5-7 раз.

На рентгенограммах можно получить изображение любой части тела. Некоторые органы хорошо различимы на снимках благодаря условиям естественной контрастности (кости, сердце, легкие). Другие органы достаточно четко отображаются только после их искусственного контрастирования (бронхи, сосуды, полости сердца, желчные протоки, желудок, кишки и пр.). В любом случае рентгенологическая картина формируется из светлых и темных участков. Почернение рентгеновской пленки, как и фотопленки, происходит вследствие восстановления металлического серебра в ее экспонированном эмульсионном слое. Для этого пленку подвергают химической и физической обработке: ее проявляют, фиксируют, промывают и сушат. В современных рентгеновских кабинетах весь процесс полностью автоматизирован благодаря наличию проявочных машин. Применение микропроцессорной техники, высокой температуры и быстродействующих реактивов позволяет сократить время получения рентгенограммы до 1 -1,5 мин.

Следует помнить, что рентгеновский снимок по отношению к изображению, видимому на флюоресцентном экране при просвечивании, является негативом. Поэтому прозрачные участки на рентгенограмме называют темными («затемнениями»), а темные - светлыми («просветлениями»). Но главная особенность рентгенограммы заключается в другом. Каждый луч на своем пути через тело человека пересекает не одну, а громадное количество точек, расположенных как на поверхности, так и в глубине тканей. Следовательно, каждой точке на снимке соответствует множество действительных точек объекта, которые проецируются друг на друга. Рентгеновское изображение является суммационным, плоскостным. Это обстоятельство приводит к потере изображения многих элементов объекта, поскольку изображение одних деталей накладывается на тень других. Отсюда вытекает основное правило рентгенологического исследования: исследование любой части тела (органа) должно быть произведено как минимум в двух взаимно перпендикулярных проекциях - прямой и боковой. Дополнительно к ним могут понадобиться снимки в косых и аксиальных (осевых) проекциях.

Рентгенограммы изучают в соответствии с общей схемой анализа лучевых изображений.

Метод рентгенографии применяют повсеместно. Он доступен для всех лечебных учреждений, прост и необременителен для пациента. Снимки можно производить в стационарном рентгеновском кабинете, в палате, в операционной, в реанимационном отделении. При правильном выборе технических условий на снимке отображаются мелкие анатомические детали. Рентгенограмма является документом, который может храниться продолжительное время, использоваться для сопоставления с повторными рентгенограммами и предъявляться для обсуждения неограниченному числу специалистов.

Показания к рентгенографии весьма широки, но в каждом отдельном случае должны быть обоснованы, так как рентгенологическое исследование сопряжено с лучевой нагрузкой. Относительными противопоказаниями служат крайне тяжелое или сильно возбужденное состояние больного, а также острые состояния, требующие экстренной хирургической помощи (например, кровотечение из крупного сосуда, открытый пневмоторакс).

3. Электрорентгенография

Электрорентгенография - метод получения рентгеновского изображения на полупроводниковых пластинах с последующим перенесением его на бумагу.

Электрорентгенографический процесс включает в себя следующие этапы: зарядка пластины, ее экспонирование, проявление, перенос изображения, фиксация изображения.

Зарядка пластины. Металлическую пластину, покрытую селеновым полупроводниковым слоем, помещают в зарядное устройство электрорентгенографа. В нем полупроводниковому слою сообщается электростатический заряд, который может сохраняться в течение 10 мин.

Экспонирование. Рентгенологическое исследование проводят так же, как при обычной рентгенографии, только вместо кассеты с пленкой используют кассету с пластиной. Под влиянием рентгеновского облучения сопротивление полупроводникового слоя уменьшается, он частично теряет свой заряд. Но в разных местах пластины заряд меняется не одинаково, а пропорционально количеству попадающих на них рентгеновских квантов. На пластине создается скрытое электростатическое изображение.

Проявление. Электростатическое изображение проявляется путем напыления на пластину темного порошка (тонера). Отрицательно заряженные частицы порошка притягиваются к тем участкам селенового слоя, которые сохранили положительный заряд, причем в степени, пропорциональной величине заряда.

Перенос и фиксация изображения. В электроретинографе изображение с пластины коронным разрядом переносится на бумагу (чаще всего используют писчую бумагу) и фиксируется в парах закрепителя. Пластина после очищения от порошка вновь пригодна для употребления.

Электрорентгенографическое изображение отличается от пленочного двумя главными особенностями. Первая заключается в его большой фотографической широте - на электрорентгенограмме хорошо отображаются как плотные образования, в частности кости, так и мягкие ткани. При пленочной рентгенографии добиться этого значительно труднее. Вторая особенность - феномен подчеркивания контуров. На границе тканей разной плотности они кажутся как бы подрисованными.

Положительными сторонами электрорентгенографии являются: 1) экономичность (дешевая бумага, на 1000 и более снимков); 2) быстрота получения изображения - всего 2,5-3 мин; 3) все исследование осуществляется в незатемненном помещении; 4) «сухой» характер получения изображения (поэтому за рубежом электрорентгенографию называют ксерорадиографией - от греч. xeros - сухой); 5) хранение электрорентгенограмм намного проще, чем рентгеновских пленок.

Вместе с тем необходимо отметить, что чувствительность электрорентгенографической пластины значительно (в 1,5-2 раза) уступает чувствительности комбинации пленка - усиливающие экраны, применяемой в обычной рентгенографии. Следовательно, при съемке приходится увеличивать экспозицию, что сопровождается возрастанием лучевой нагрузки. Поэтому электрорентгенографию не применяют в педиатрической практике. Кроме того, на электрорентгенограммах довольно часто возникают артефакты (пятна, полосы). С учетом сказанного, основным показанием для ее применения является неотложное рентгенологическое исследование конечностей.

Рентгеноскопия (рентгеновское просвечивание)

Рентгеноскопия - метод рентгенологического исследования, при котором изображение объекта получают на светящемся (флюоресцентном) экране. Экран представляет собой картон, покрытый особым химическим составом. Этот состав под влиянием рентгеновского излучения начинает светиться. Интенсивность свечения в каждой точке экрана пропорциональна количеству попавших на него рентгеновских квантов. Со стороны, обращенной к врачу, экран покрыт свинцовым стеклом, предохраняющим врача от прямого воздействия рентгеновского излучения.

Флюоресцентный экран светится слабо. Поэтому рентгеноскопию выполняют в затемненном помещении. Врач должен в течение 10-15 мин привыкать (адаптироваться) к темноте, чтобы различить малоинтенсивное изображение. Сетчатка человеческого глаза содержит два типа зрительных клеток - колбочки и палочки. Колбочки обеспечивают восприятие цветных изображений, тогда как палочки - механизм сумеречного зрения. Можно фигурально сказать, что рентгенолог при обычном просвечивании работает «палочками».

У рентгеноскопии много достоинств. Она легковыполнима, общедоступна, экономична. Ее можно произвести в рентгеновском кабинете, в перевязочной, в палате (с помощью передвижного рентгеновского аппарата). Рентгеноскопия позволяет изучать перемещения органов при изменении положения тела, сокращения и расслабления сердца и пульсацию сосудов, дыхательные движения диафрагмы, перистальтику желудка и кишок. Каждый орган нетрудно исследовать в разных проекциях, со всех сторон. Подобный способ исследования рентгенологи называют многоосевым, или методом вращения больного за экраном. Рентгеноскопию используют для выбора наилучшей проекции для рентгенографии с целью выполнения так называемых прицельных снимков.

Однако у обычной рентгеноскопии есть слабые стороны. Она связана с более высокой лучевой нагрузкой, чем рентгенография. Она требует затемнения кабинета и тщательной темновой адаптации врача. После нее не остается документа (снимка), который мог бы храниться и был бы пригоден для повторного рассмотрения. Но самое главное в другом: на экране для просвечивания мелкие детали изображения не удается различить. Это неудивительно: примите во внимание, что яркость свечения хорошего негатоскопа в 30 000 раз больше, чем флюоресцентного экрана при рентгеноскопии. В силу высокой лучевой нагрузки и низкой разрешающей способности рентгеноскопию не разрешается применять для проверочных исследований здоровых людей.

Все отмеченные недостатки обычной рентгеноскопии в известной степени устраняются в том случае, если в рентгенодиагностическую систему введен усилитель рентгеновского изображения (УРИ). Плоский УРИ типа «Круиз» повышает яркость свечения экрана в 100 раз. А УРИ, включающий в себя телевизионную систему, обеспечивает усиление в несколько тысяч раз и позволяет заменить обычную рентгеноскопию рентгенотелевизионным просвечиванием.

4. Рентгенотелевизионное просвечивание

Рентгенотелевизионное просвечивание - современный вид рентгеноскопии. Оно выполняется с помощью усилителя рентгеновского изображения (УРИ), в состав которого входят рентгеновский электронно-оптический преобразователь (РЭОП) и замкнутая телевизионная система.

РЭОП представляет собой вакуумную колбу, внутри которой, с одной стороны, имеется рентгеновский флюоресцентный экран, а с противоположной - катодолюминесцентный экран. Между ними приложено электрическое ускоряющее поле с разницей потенциалов около 25 кВ. Возникающий при просвечивании световой образ на флюоресцентном экране превращается на фотокатоде в поток электронов. Под действием ускоряющего поля и в результате фокусировки (повышения плотности потока) энергия электронов значительно возрастает - в несколько тысяч раз. Попадая на катодолюминесцентный экран, электронный поток создает на нем видимое, аналогичное исходному, но очень яркое изображение.

Это изображение через систему зеркал и линз передается на передающую телевизионную трубку - видикон. Возникающие в ней электрические сигналы поступают для обработки в блок телевизионного канала, а затем - на экран видеоконтрольного устройства или, проще говоря, на экран телевизора. При необходимости изображение может фиксироваться с помощью видеомагнитофона.

Таким образом, в УРИ осуществляется такая цепочка преобразования образа исследуемого объекта: рентгеновский - световой - электронный (на этом этапе происходит усиление сигнала) - вновь световой - электронный (здесь возможно исправление некоторых характеристик образа) - вновь световой.

Рентгеновское изображение на телевизионном экране, как и обычное телевизионное изображение, можно рассматривать при видимом свете. Благодаря УРИ рентгенологи совершили скачок из царства темноты в царство света. Как остроумно заметил один ученый, «темное прошлое рентгенологии позади». А ведь в течение многих десятилетий рентгенологи могли считать своим лозунгом слова, начертанные на гербе Дон-Кихота: «Posttenebrassperolucem» («После тьмы надеюсь на свет»).

Рентгенотелевизионное просвечивание не требует темновой адаптации врача. Лучевая нагрузка на персонал и пациента при нем значительно меньше, чем при обычной рентгеноскопии. На экране телевизора заметны детали, которые при рентгеноскопии не улавливаются. По телевизионному тракту рентгеновское изображение может быть передано на другие мониторы (в комнату управления, в учебную аудиторию, в кабинет консультанта и т. д.). Телевизионная техника обеспечивает возможность видеозаписи всех этапов исследования.

С помощью зеркал и линз рентгеновское изображение из рентгеновского электронно-оптического преобразователя может быть введено в кинокамеру. Такое рентгенологическое исследование носит название рентгенокинематографии. Это изображение может быть направлено также в фотокамеру. Получающиеся при этом снимки, имеющие небольшие - 70X70 или 100Х 100 мм - размеры и выполненные на рентгеновской пленке, носят название фоторентгенограмм (УРИ-флюорограмм). Они более экономичны, чем обычные рентгенограммы. Кроме того, при их выполнении меньше лучевая нагрузка на больного. Еще одно преимущество состоит в возможности скоростной съемки - до 6 кадров в секунду.

5. Флюорография

Флюорография - метод рентгенологического исследования, заключающийся в фотографировании изображения с рентгеновского флюоресцентного экрана или экрана электронно-оптического преобразователя на фотопленку небольшого формата.

При наиболее распространенном способе флюорографии уменьшенные рентгеновские снимки - флюорограммы получают на специальном рентгеновском аппарате - флюорографе. В этом аппарате имеется флюоресцентный экран и механизм автоматического перемещения рулонной пленки. Фотографирование изображения осуществляется посредством фотокамеры на эту рулонную пленку с размером кадра 70X70 или 100Х 100 мм.

При другом способе флюорографии, уже упомянутом в предыдущем параграфе, фотосъемку производят на пленки того же формата прямо с экрана электронно-оптического преобразователя. Этот способ исследования называют УРИ-флюорографией. Методика особенно выгодна при исследовании пищевода, желудка и кишечника, так как обеспечивает быстрый переход от просвечивания к съемке.

На флюорограммах детали изображения фиксируются лучше, чем при рентгеноскопии или рентгенотелевизионном просвечивании, но несколько хуже (на 4-5%) по сравнению с обычными рентгенограммами. В поликлиниках и стационарах более дорогую рентгенографию, особенно при повторных контрольных исследованиях. Такое рентгенологическое исследование называют диагностической флюорографией. Основным назначением флюорографии в нашей стране является проведение массовых проверочных рентгенологических исследований, главным образом для выявления скрыто протекающих поражений легких. Такую флюорографию называют проверочной или профилактической. Она является способом отбора из популяции лиц с подозрением на заболевание, а также способом диспансерного наблюдения за людьми с неактивными и остаточными туберкулезными изменениями в легких, пневмосклерозами и т. д.

Для проверочных исследований применяют флюорографы стационарного и передвижного типа. Первые размещают в поликлиниках, медико-санитарных частях, диспансерах, больницах. Передвижные флюорографы монтируют на автомобильных шасси или в железнодорожных вагонах. Съемку и в тех и в других флюорографах производят на рулонную пленку, которую затем проявляют в специальных бачках. Ввиду малого формата кадра флюорография значительно дешевле рентгенографии. Ее повсеместное использование означает существенную экономию средств медицинской службы. Для исследования пищевода, желудка и двенадцатиперстной кишки созданы специальные гастрофлюорографы.

Готовые флюорограммы рассматривают на специальном фонаре - флюороскопе, который увеличивает изображение. Из общего контингента обследованных отбирают лиц, у которых по флюорограммам заподозрены патологические изменения. Их направляют для дополнительного обследования, которое проводят на рентгенодиагностических установках с применением всех необходимых рентгенологических методов исследования.

Важные достоинства флюорографии - это возможность обследования большого числа лиц в течение короткого времени (высокая пропускная способность), экономичность, удобство хранения флюорограмм. Сопоставление флюорограмм, произведенных при очередном проверочном обследовании, с флюорограммами предыдущих лет позволяет рано выявлять минимальные патологические изменения в органах. Этот прием получил название ретроспективного анализа флюорограмм.

Наиболее эффективным оказалось применение флюорографии для выявления скрыто протекающих заболеваний легких, в первую очередь туберкулеза и рака. Периодичность проверочных обследований определяют с учетом возраста людей, характера их трудовой деятельности, местных эпидемиологических условий.

6. Дигитальная (цифровая) рентгенография

Описанные выше системы получения рентгеновского изображения относятся к так называемой обычной, или конвенциональной, рентгенологии. Но в семействе этих систем быстро растет и развивается новый ребенок. Это - дигитальные (цифровые) способы получения изображений (от англ. digit - цифра). Во всех дигитальных устройствах изображение строится в принципе одинаково. Каждая «дигитальная» картинка состоит из множества отдельных точек. Каждой точке изображения приписывается число, которое соответствует интенсивности ее свечения (ее «серости»). Степень яркости точки определяют в специальном приборе - аналого-цифровом преобразователе (АЦП). Как правило, число пикселей в одном ряду равно 32, 64, 128, 256, 512 или 1024, причем по ширине и высоте матрицы количество их равно. При величине матрицы 512 X 512 дигитальная картинка состоит из 262 144 отдельных точек.

Рентгеновское изображение, полученное в телевизионной камере, поступает после преобразования в усилителе на АЦП. В нем электрический сигнал, несущий информацию о рентгеновском изображении, превращается в череду цифр. Таким образом, создается цифровой образ - цифровое кодирование сигналов. Цифровая информация поступает затем в компьютер, где обрабатывается по заранее составленным программам. Программу выбирает врач, исходя из задач исследования. При переводе аналогового изображения в цифровое происходит, конечно, некоторая потеря информации. Но она компенсируется возможностями компьютерной обработки. С помощью компьютера можно улучшить качество изображения: повысить его контрастность, очистить его от помех, выделить в нем интересующие врача детали или контуры. Например, созданное фирмой Сименс устройство «Политрон» с матрицей 1024 X 1024 позволяет добиться отношения «сигнал - шум», равного 6000:1. Это обеспечивает выполнение не только рентгенографии, но и рентгеноскопии с высоким качеством изображения. В компьютере можно сложить изображения или вычесть одно из другого.

Чтобы цифровую информацию превратить в изображение на телевизионном экране или пленке, необходим цифро-аналоговый преобразователь (ЦАП). Его функция противоположна АЦП. Цифровой образ, «упрятанный» в компьютере, он трансформирует в аналоговое, видимое (осуществляет декодирование).

У дигитальной рентгенографии большое будущее. Есть основания полагать, что она постепенно будет вытеснять обычную рентгенографию. Она не требует дорогостоящей рентгеновской пленки и фотопроцесса, отличается быстродействием. Она позволяет после окончания исследования производить дальнейшую (апостериорную) обработку изображения и передачу его на расстояние. Весьма удобно хранение информации на магнитных носителях (диски, ленты).

Большой интерес вызывает люминесцентная дигитальная рентгенография, основанная на использовании запоминающего изображения люминесцентного экрана. Во время рентгеновской экспозиции изображение записывается на такой пластине, а затем считывается с нее с помощью гелий-неонового лазера и записывается в цифровой форме. Лучевая нагрузка по сравнению с обычной рентгенографией уменьшается в 10 и более раз. Разрабатываются и другие способы дигитальной рентгенографии (например, снятие электрических сигналов с экспонированной селеновой пластины без обработки ее в электрорентгенографе).

План :

1) Рентгенологические исследования. Сущность рентгенологических методов исследования. Методы рентгеновского исследования: рентгеноскопия , рентгенография, флюорография , рентгенотомография, компьютерная томография . Диагностическое значение рентгенологических исследований. Роль медицинской сестры в подготовке к рентгеновским исследованиям. Правила подготовки пациента к рентгеноскопии и рентгенографии желудка и 12-перстной кишки, бронхографии, холецистографии и холангиографии, ирригоскопии и графии, обзорной рентгенографии почек и экскреторной урографии.

Рентгенологическое исследование почечных лоханок (пиелография) проводится с помощью урографина, вводимого внутривенно. Рентгенографическое исследование бронхов (бронхография) проводится после распыления в бронхах контрастного вещества — йодолипола. Рентгеновское исследование сосудов (ангиография) осуществляется с помощью кардиотраста, вводимого внутривенно. В некоторых случа-ях контрастирование органа производится за счет воздуха, который вводится в окружающую ткань или полость. На-пример, при рентгеновском исследовании почек, когда есть подозрение на опухоль почки, вводится воздух в околопочечную клетчатку (пневморен); для обнаружения прорастания опухолью стенок желудка воздух вводится в брюшнуюполость, т. е. исследование проводится в условиях искус-ственного пневмоперитонеума.

Томография - послойная рентгенография. При томо-графии благодаря движению во время съемки с определен-ной скоростью рентгеновской трубки на пленке получа-ется резким изображение только тех структур, которые расположены на определенной, заранее заданной глуби-не. Тени органов, расположенных на меньшей или боль-шей глубине, получаются смазанными и не накладываются на основное изображение. Томография облегчает выявле-ние опухолей, воспалительных инфильтратов и других па-тологических образований. На томограмме указывается в сантиметрах — на какой глубине, считая от спины, сделан снимок: 2, 4, 6, 7, 8 см.

Одной из наиболее совершенных методик, дающих дос-товерную информацию, является компьютерная томогра-фия , позволяющая благодаря использованию ЭВМ диффе-ренцировать ткани и изменения в них, очень незначительно различающиеся по степени поглощения рентгеновского из-лучения.

Накануне любого инструментального исследования необходимо проинформировать в доступной форме больного о сути предстоящего исследования, необходимости его проведения и получить согласие на проведение этого исследования в письменном виде.

Подготовка больного к рентгенологическому исследованию желудка и двенадцатиперстной кишки. Это метод исследования, основанный на просвечивании рентгеновскими лучами полых органов с применением контрастного вещества (сульфата бария), позволяющий определить форму, величину, положение, подвижность желудка и 12-перстной кишки, локализацию язвы, опухоли, оценить рельеф слизистой оболочки и функциональное состояние желудка (его эвакуаторную способность).

Перед исследованием необходимо:

1. Провести инструктаж больного по следующему плану:

а) за 2-3 дня до исследования необходимо исключить из рациона газообразующие продукты (овощи, фрукты, черный хлеб, молоко);

б) накануне исследования в 18 оо - легкий ужин;

в) предупредить, что исследование проводится натощак, поэтому накануне исследования больной не должен есть и пить, принимать медикаменты и курить.

2. В случае упорных запоров по назначению врача вечером, накануне исследования, ставится очистительная клизма.

5. С целью контрастирования пищевода, желудка и 12-типерстной кишки - в рентгенологическом кабинете больной выпивает водную взвесь сульфата бария.

Выполняется с цельюдиагностики заболеваний желчного пузыря и желчевыводящих путей. Необходимо предупредить больного о возможности появления тошноты и жидкого стула как реакции на прием контрастного вещества. Нужно взвесить больного и рассчитать дозу контрастного вещества.

Проводится инструктаж больного по следующей схеме:

а) накануне исследования в течение трёх дней больной соблюдает диету без высокого содержания клетчатки (исключить капусту, овощи, хлеб грубого помола);

б) за 14 - 17 часов до исследования больной принимает контрастное вещество дробно (по 0,5 грамма) в течение часа каждые 10 минут, запивая сладким чаем;

в) в 18 оо - легкий ужин;

г) вечером за 2 часа до сна, если больной не может освободить кишечник естественным путем, поставить очистительную клизму;

д) утром в день исследования, больной должен натощак явиться в рентгенкабинет (не пить, не есть, не курить, не принимать лекарственные вещества). Взять с собой 2 сырых яйца. В рентгенкабинете делаются обзорные снимки, после чего больной принимает желчегонный завтрак (2 сырых яичных желтка или раствор сорбита (20г на стакан кипяченой воды) для желчегонного эффекта). Спустя 20 минут после приема желчегонного завтрака выполняется серия обзорных снимков через определенные промежутки времени в течение 2-х часов.

Подготовка больного к холеграфии (рентгенологическое исследование желчного пузыря желчевыводящих путей после внутривенного введения контрастного вещества).

1. Выяснить аллергологический анамнез (непереносимость препаратов йода). За 1 - 2 дня до исследования провести пробу на чувствительность к контрастному веществу. Для этого 1 мл контрастного вещества, подогретого до t=37-38 о С, ввести внутривенно, осуществлять наблюдение за состоянием больного. Более простой способ - это прием внутрь йодистого калия по столовой ложке 3 раза в день. При положительной аллергопробе появляется сыпь, зуд и т.д. В случае отсутствия реакции на введенное контрастное вещество продолжить подготовку больного к исследованию

2. Перед исследованием провести инструктаж больного по следующему плану:

2 - 3 дня до исследования - бесшлаковая диета.

В 18 оо - легкий ужин.

За 2 часа до сна - очистительная клизма, если больной не может освободить кишечник естественным путем.

- Исследование проводится натощак.

3. В рентгенкабинете ввести внутривенно медленно в течение 10 минут 20-30 мл контрастного вещества, подогретого до t = 37-38 0 С.

4. Больному выполняется серия обзорных снимков.

5. Обеспечить контроль за состоянием больного в течение суток после выполнения исследования с целью исключения замедленного типа аллергических реакций.

Подготовка больного к бронхографии и бронхоскопии .

Бронхография - исследование дыхательных путей, позволяющее получить рентгенографически изображение трахеи и бронхов после введения в них контрастного вещества с помощью бронхоскопа. Бронхоскопия - инструментальный, эндоскопический метод исследования трахеи и бронхов, позволяющий произвести осмотр слизистой оболочки трахеи, гортани, провести забор содержимого или промывных вод бронхов для бактериологического, цитологического и иммунологического исследований, а также проведение лечения.

1. Для исключения идиосинкразии к йодолиполу назначается однократно 1столовая ложка данного препарата внутрь за 2-3 дня до исследования и в течение этих 2-3-х дней больной принимает 0,1% раствор атропина по 6-8 капель 3 раза в день).

2. Если бронхография назначена женщине - предупредить, чтобы на ногтях не было лака, а на губах - помады.

3. Накануне вечером по назначению врача с седативной целью больному принять 10 мг седуксена (при нарушении сна - снотворное).

4. За 30-40 минут до выполнения манипуляции провести премедикацию по назначению врача: ввести подкожно 1мл - 0,1% раствора атропина и 1мл 2% раствора промедола (оформить запись в истории болезни и журнале учета наркотических средств).

Подготовка больного к рентгенологическому исследованию толстого кишечника (ирригоскопия, ирригография) , которое позволяет получить представление о длине, положении, тонусе, форме толстой кишки, выявить нарушения моторной функции.

1. Провести инструктаж больного по следующей схеме:

а) за три дня до исследования назначается бесшлаковая диета;б)если больного беспокоит вздутие кишечника, то можно порекомендовать в течение трех дней принимать настой ромашки, карболен или ферментные препараты;

в) накануне исследования в 15-16 часов больной получает 30 г касторового масла (при отсутствии поноса);

г) в 19 00 - легкий ужин; д) в 20 00 и 21 00 накануне исследования проводятся очистительные клизмы до эффекта «чистой воды»;

е) утром в день исследования не позднее, чем за 2 часа до ирригоскопии выполняются 2 очистительные клизмы с интервалом в один час;

ж) в день исследования больной не должен пить, есть, курить и принимать медикаменты. С помощью кружки Эсмарха в кабинете медсестрой вводится водная взвесь сульфата бария.

Подготовка больного к рентгенологическому исследованию почек (обзорный снимок, экскреторная урография).

1. Провести инструктаж по подготовке больного к исследованию:

Исключить из питания газообразующие продукты (овощи, фрукты, молочные, дрожжеподобные продукты, черный хлеб, фруктовые соки) в течение 3 дней до исследования.

Принимать при метеоризме по назначению врача активированный уголь.

Исключить прием пищи за 18-20 часов до исследования.

2. Накануне вечером около 22 00 часов и утром за 1,5-2 часа до исследования поставить очистительные клизмы

3. Предложить больному освободить мочевой пузырь непосредственно перед исследованием.

В рентгенологическом кабинете врач-рентгенолог выполняет обзорный снимок брюшной полости. Медицинская сестра осуществляет медленное (в течение 5-8 минут), постоянно контролируя самочувствие больного, введение контрастного вещества. Врачом- рентгенологом выполняется серия снимков.

Основные методы рентгенологического исследования - рентгеноскопия и рентгенография

Цель занятия. Освоить основные методы рентгенодиагностики - рентгеноскопию и рентгенографию.

Объекты исследования и оборудование. Рентгеновский аппарат, индивидуальные средства защиты, экран для просвечивания или криптоскоп, рентгеновские кассеты, усиливающие экраны, рентгеновская пленка, оборудованная фотокомната с необходимыми растворами и принадлежностями, сушильный шкаф для сушки пленки, негатоскоп, обследуемое животное.

Общая характеристика методов рентгенодиагностики. Любое рентгенологическое исследование заключается в получении рентгеновского изображения объекта и последующем его изучении. В самом общем виде в систему рентгенологического исследования входят: источник излучения, объект исследования, приемник излучения и специалист, выполняющий исследование.

Источником излучения служит рентгеновская трубка; объектом исследования - больное или, в некоторых случаях, здоровое животное. В качестве приемника излучения используют приспособления или приборы, которые преобразуют энергию неоднородного рентгеновского пучка, проходящего сквозь тело животного, в изображение.

Простейшим приемником служит флюороскопический экран для просвечивания (метод рентгеноскопии). Экран покрыт специальным составом (люминофором), который светится под воздействием рентгеновского излучения. В качестве люминофора используют платиносинеродистый барий, активированные сульфиды цинка, кадмия и др.

Приемником может быть также рентгеновская пленка, в покрывающей эмульсии которой содержатся галоидные соединения серебра. Рентгеновское излучение способно разлагать эти соединения, поэтому после проявления и фиксирования экспонированной пленки на ней возникает изображение объекта (на этом основан метод рентгенографии - получения рентгеновского снимка).

Вместо пленки можно использовать селеновую пластину, заряженную электростатическим электричеством. Под действием рентгеновского излучения в разных частях селенового слоя изменяется электрический потенциал и формируется скрытое изображение, которое с помощью специального устройства проявляют и переносят на бумагу. Подобный метод исследования получил название электрорентгенографии (ксерорадиография).

Самым чувствительным приемником излучения служит набор сцинтилляционных детекторов или ионизационных камер. Они регистрируют интенсивность излучения во всех частях рентгеновского пучка; информация поступает в электронное устройство, соединенное с компьютером. На основании математической обработки полученных данных на телевизионном дисплее возникает изображение объекта. Этот метод получил название компьютерной томографии.

С использования одного из указанных методов всегда начинают рентгенологическое исследование.

Рентгеноскопия. При просвечивании изображение объекта получают на флюороскопическом экране. Пучок излучения, выходящий из рентгеновской трубки, проходит через тело животного и попадает на обратную сторону экрана, вызывая при этом слабое свечение его светочувствительного слоя, обращенного к врачу. Изображение можно рассматривать лишь в затемненном помещении после 10-15-минутной адаптации. Ветеринарный врач-рентгенолог обязан использовать средства защиты: экран, покрытый просвинцованным стеклом, предохраняет от облучения глаза; фартук и перчатки из рентгенозащитного материала - туловище и руки; ширма из листового свинца или просвинцованной резины - нижнюю половину тела рентгенолога.

Методика просвечивания проста и экономична. С помощью рентгеноскопии наблюдают за движением органов и перемещением в них контрастного вещества, исследуя животное в различных положениях, пальпируя нужный участок тела. Благодаря перечисленным достоинствам рентгеноскопию применяют очень часто, однако у метода есть и существенные недостатки. Прежде всего не остается документа, который можно анализировать в дальнейшем. Кроме того, на флюороскопическом экране плохо различимы мелкие детали изображения и, наконец, рентгеноскопия сопряжена с гораздо большей лучевой нагрузкой на исследуемое животное и рентгенолога, чем рентгенография.

Для устранения этих недостатков был сконструирован специальный прибор - усилитель рентгеновского изображения (УРИ) с приемным телевизионным устройством (рис. 9.8), который воспринимает слабое свечение рентгеновского экрана, усиливает его в несколько тысяч раз, после чего рентгенолог может рассматривать изображение через монокуляр или же оно проецируется на передающую телевизионную трубку, а затем в приемное телевизионное устройство.

Рентгеноскопия с помощью УРИ и телевизионной техники получила название рентгенотелевизионного просвечивания, или рентгенотел евидения. Ее основные преимущества: животных просвечивают в незатемненном помещении; значительно повышается яркость изображения, что позволяет выявлять мелкие детали объекта; снижается лучевая нагрузка на исследуемое животное и рентгенолога и, что очень важно, появляется возможность фотографировать с эк-

Рис. 9.8. Рентгенотелевизионная приставка: а - схема электронно-оптического усилителя: 1 - рентгеновский излучатель; 2 - объект исследования; 3 - входной флюоресцирующий экран с фотокатодом; 4 - выходной флюоресцирующий экран; 5- анод;

  • 6 - объектив; 7- защитное свинцовое стекло; 8- окуляр;
  • 6 - схема формирования видеомагнитной записи: 1 - рентгеновский излучатель; 2 - объект исследования; 3 - электронно-оптический усилитель; 4 - телекамера; 5- монитор; 6- видеомагнитофон;
  • 7 - видеомонитор

рана, записывать изображение на кино-, видеомагнитную пленку или диски.

Рентгенография. Это способ рентгеновского исследования, при котором изображение объекта получают на рентгеновской пленке путем прямого экспонирования пучком излучения. Рентгеновская

пленка чувствительна не только к рентгеновскому излучению, но и к видимому свету, поэтому ее вкладывают в кассету, предохраняющую от видимого света, но пропускающую рентгеновское излучение (рис. 9.9).

Пучок рентгеновского излучения направляют на исследуемую часть тела. Излучение, прошедшее через тело животного, попадает на пленку. Изображение становится видимым после обработки пленки (проявление, фиксирование). Готовый рентгеновский снимок рассматривают в проходящем свете на специальном приборе - не- гатоскопе (рис. 9.10). Снимок любой части тела устанавливают на негатоскопе таким образом, чтобы проксимальные отделы были обращены вверх; при изучении рентгенограмм, сделанных в боковых проекциях, дорсальная поверхность (или голова) должна быть слева, волярная (плантарная) - справа.

Рис. 9.9.

Рис. 9.10.

У рентгенографии много достоинств. Прежде всего метод прост и легко выполним. Снимать можно как в рентгеновском кабинете, так и непосредственно в операционной, стационаре и в полевых условиях с помощью переносных рентгеновских аппаратов. На снимке получается четкое изображение большинства органов. Некоторые из них, например кости, легкие, сердце, хорошо видны за счет естественной контрастности; другие четко проявляются на снимках после искусственного контрастирования. Снимки можно хранить долгое время, сопоставлять с предыдущими и последующими рентгенограммами, т.е. изучать динамику заболевания. Показания к рентгенографии очень широки - с нее начинают большинство рентгенологических исследований.

При рентгенографии необходимо соблюдать определенные правила: снимать каждый орган в двух взаимно перпендикулярных проекциях (обычно используют прямую и боковую); во время съемки максимально приблизить исследуемую часть тела к кассете с пленкой (тогда изображение получится наиболее четким и его размеры будут мало отличается от истинных размеров изучаемого органа).

Однако существует методика рентгенографии, при которой снимаемый объект, наоборот, помещают сравнительно далеко от пленки. В этих условиях из-за расходящегося рентгеновского пучка получается увеличенное изображение органа. Этот способ съемки - рентгенография с прямым увеличением изображения - сопряжен с использованием особых «острофокусных» рентгеновских трубок; его применяют, чтобы изучать мелкие детали.

Различают обзорные и прицельные рентгенограммы. На обзорных получают изображение всего органа, а на прицельных - только интересующей врача части.

Электрорентгенография (ксерорадиография). В этом случае рентгеновское изображение получают на полупроводниковых пластинах и затем переносят на бумагу.

При ксерорадиографии пучок рентгеновского излучения, прошедший через тело животного, попадает не на кассету с пленкой, а на высокочувствительную селеновую пластинку, заряженную перед съемкой статическим электричеством. Под влиянием излучения электрический потенциал пластины меняется на разных участках не одинаково, а в соответствии с интенсивностью потока рентгеновских квантов. Иначе говоря, на пластине возникает скрытое изображение из электростатических зарядов.

В дальнейшем селеновую пластину обрабатывают специальным проявочным порошком. Отрицательно заряженные частицы последнего притягиваются к тем участкам селенового слоя, на которых сохранились положительные заряды, и не удерживаются в тех местах, которые потеряли свой заряд под действием рентгеновского излучения. Без всякой фотообработки и в кратчайший срок (за 30-60 с) на пластине можно увидеть рентгеновское изображение объекта. Элек- трорентгенографические приставки снабжены приспособлением, которое в течение 2-3 мин переносят изображение с пластинки на бумагу. После этого мягкой тканью снимают остатки проявочного порошка с пластины и вновь ее заряжают. На одной пластине можно получить более 1000 снимков, после чего она становится непригодной для электрорентгенографии.

Главное достоинство электрорентгенографии заключается в том, что с ее помощью быстро получают большое число снимков, не расходуя дорогостоящую рентгеновскую пленку, при обычном освещении и без «мокрого» фотопроцесса.

В нашей стране наибольшее распространение получили электро- рентгенографические аппараты ЭРГА-МП (ЭРГА-01) и ЭРГА-МТ (ЭРГА-02).

С развитием компьютерных технологий в рентгенографии появилась возможность практически моментально получать изображение, активировать его, хранить, восстанавливать и даже передавать изображение на большие расстояния в цифровом формате. Главные преимущества использования цифровой рентгенографии - доступность изображения сразу после съемки, уменьшение облучения в несколько раз по сравнению с традиционной пленочной технологией, короткая экспозиция (позволяющая избежать динамической нерезкости), полный отказ от расходных материалов и фотолаборатории, большие диагностические возможности, позволяющие выделять структуры тканей, увеличивать интересующий фрагмент и проводить измерения прямо на экране компьютера, а также возможность организовывать компактный архив в виде базы данных с моментальным и удобным поиском. При необходимости изображение может быть напечатано на специальной пленке или на бумаге.

Основный недостаток, ограничивающий использование цифровых рентгеновских систем в ветеринарии, - высокая стоимость оборудования и, возможно, некоторая потеря качества изображения по сравнению с традиционным.

Перельман М. И., Корякин В. А.

Флюорография . Этот метод широко применяется при массовых обследованиях населения. Другое название этого рентгенологического метода - фоторентгенография, так как суть его заключается в фотографировании изображения с рентгеновского экрана электронно-оптического усилителя на фотопленку. В зависимости от аппарата и величины фотопленки получают кадры размером 70 х 70 или 100 х 100 мм.

По сравнению с обычной рентгенографией флюорография имеет определенные преимущества. Она позволяет значительно увеличить пропускную способность рентгеновского аппарата, сократить расходы на пленку и ее обработку, облегчить хранение архива рентгенограмм.

Разрешающая способность высококачественной флюорограммы легких в прямой и боковой проекциях с размером кадра 100 х 100 мм почти такая же, как и рентгеновского снимка, хотя ее информативность несколько ниже. До недавнего времени флюорографию легких с размером кадра 70 х 70 мм применяли в основном при массовых обследованиях населения, а при выявлении патологии проводили рентгенографию.

В настоящее время флюорограмма с размером кадра 100 х 100 мм успешно заменяет обзорную рентгенограмму легких и флюорография получает все большее распространение в качестве диагностического метода.

Рентгенография . Рентгенографическое исследование легких начинают с выполнения обзорного снимка в передней прямой проекции (кассета с пленкой у передней грудной стенки). При патологических изменениях в задних отделах легких целесообразно выполнить обзорный снимок в задней прямой проекции (кассета с пленкой у задней грудной стенки).

Далее делают обзорный снимок в боковой проекции - правый и левый. При выполнении правого бокового снимка к кассете с пленкой прилежит правая боковая поверхность грудной клетки, при выполнении левого - левая.

Рентгенограммы в боковых проекциях необходимы для определения локализации патологического процесса в долях и сегментах легких, выявления изменений в междолевых щелях и в легких за тенями сердца и диафрагмы.

При двусторонней легочной патологии лучше выполнять снимки не в боковых, а в косых проекциях, на которых получаются раздельные изображения правого и левого легких.

Рентгеновские снимки обычно выполняют на высоте вдоха. В условиях выдоха снимки делают для лучшего выявления края спавшегося легкого и плевральных сращений при наличии пневмоторакса, а также для определения смещения органов средостения при патологии легких и плевры.

Для повышения информативности рентгенограмм можно увеличить время экспозиции или жесткость рентгеновских лучей. Такие снимки называют суперэкспонированными и жесткими. Их выполняют больным с экссудативным плевритом и массивными плевральными наложениями, уплотнениями легочной ткани, после хирургических операций на легких, для получения лучшего изображения стенок трахеи и бронхов.

На жестких и суперэкспонированных снимках могут выявляться различные структуры в зонах интенсивного затемнения, не видимые на обычном снимке, но тени малой интенсивности не определяются.

Обзорные рентгенограммы в прямой и боковой проекциях дают не только общее представление о состоянии органов грудной полости, но и важную диагностическую информацию. Их дополняют прицельными снимками, производимыми под контролем рентгенотелевидения узким пучком лучей.

При этом больному придают такое положение, которое позволяет освободить изображение исследуемого легочного поля от наложения мешающих костных и других образований.

Сочетать информацию снимков, сделанных с использованием мягких, средних или жестких лучей, с картиной суперэкспонированных снимков в значительной степени позволяет электрорентгенография или ксерография. Изображение получают на селеновой пластине, а затем с помощью графитового порошка переносят на обычную белую бумагу.

По сравнению с обычными рентгенограммами на электрорентгенограммах вследствие «краевого эффекта» лучше выявляются контуры трахеи и бронхов, край коллабированного легкого при пневмотораксе, полости в легких, очаги, остаточные плевральные полости, уровень небольшого количества жидкости, межмышечные и подкожные скопления воздуха. Важным преимуществом электрорентгенографии является ее экономичность, так как можно обходиться без рентгеновской пленки.

Томография . Послойное рентгенологическое исследование является одним из основных методов диагностики заболеваний легких, особенно туберкулеза. Высококачественные томограммы дают дополнительную информацию о наличии и локализации очагов, участков распада легочной ткани, каверн, о состоянии бронхов и крупных легочных сосудов.

При туберкулезе легких томография имеет важное значение для наблюдения за процессом и для контроля эффективности лечения (рассасывание очагов и инфильтрации, закрытие каверн) .

План томографического исследования составляют после рентгенографии: определяют целесообразность обзорной или прицельной томографии, проекцию, направление размазывания (продольное или поперечное), режим снимков, глубину и число слоев.

При обзорной томографии делают снимки нескольких слоев: первый слой в 3 - 4 см от кожи спины, дальнейшие слои через 1-2 см, последний, передний, слой в 2-3 см от кожи передней грудной стенки.

Разновидностью томографии является зонография : исследуется более толстый слой легочной ткани. Зонография не требует высокой точности в выборе слоя, а несколько худшее качество изображения окупается более широким объемом информации, содержащейся на одном снимке, и меньшей лучевой нагрузкой на больного.

Особенности легочной патологии более четко определяются при электрорентгенотомографии : лучше визуализируются характер стенок внутрилегочных полостей, изменения лимфатических узлов, сосудов.

Компьютерная томография . Этот метод рентгенологического исследования получил всеобщее признание и применяется во всех областях клинической медицины. Компьютерная томография обеспечивает получение изображения поперечных слоев человеческого тела (аксиальная проекция).

Рентгеновская трубка, находящаяся в круговой раме, вращается вокруг продольной оси тела пациента. Тонкий пучок лучей проходит под разными углами через исследуемый слой и улавливается многочисленными сцинтилляционными детекторами, движущимися вместе с трубкой.

Разная плотность тканей, через которые проходят рентгеновские лучи, обусловливает неодинаковое изменение интенсивности их пучка, что с высокой точностью регистрируется детекторами, обрабатывается компьютером и трансформируется в изображение исследуемого поперечного слоя на телевизионном экране.

Таким образом, компьютерная томограмма представляет собой не снимок в обычном понимании этого слова, а рисунок, сделанный компьютером на основе математического анализа степени поглощения рентгеновских лучей тканями различной плотности (вычислительная томография).

Современные компьютерные томограммы позволяют исследовать поперечные слои толщиной от 2 до 10 мм. Сканирование одного слоя продолжается несколько секунд. Яркость и контрастность изображения можно изменять в больших пределах.

Значительное усиление контрастности сосудов удается получить при внутривенном введении больному небольшого количества рентгеноконтрастного раствора.

Аксиальные (поперечные) изображения можно с помощью компьютера реконструировать в прямые, боковые и косые томограммы исследованной области. Все результаты компьютерной томографии параллельно с изображением на телевизионном экране хранятся в памяти компьютера и могут быть воспроизведены на поляроидной фотобумаге или рентгеновской пленке.

Большим достоинством компьютерной томографии является количественная оценка плотности исследуемых тканей и сред, которую выражают в условных единицах по шкале Хоунсфилда.

При исследовании органов грудной полости компьютерная томография позволяет уточнить локализацию и распространение всех патологических образований, оценить их размеры и в динамике наблюдать за изменением их величины и плотности.

Метод представляет ценность при установлении характера патологических процессов в средостении, что невозможно определить при стандартной томографии. Компьютерная томография дает ценную информацию о состоянии плевральной полости, оставшейся после операции части легкого, и позволяет обеспечить высокую точность трансторакальной биопсии и сложных плевральных пункций. При компьютерной томографии органов дыхания выполняют 6-12 стандартных томографических срезов.

Рентгеноскопия . Для рентгеноскопии используют, как правило, электронно-оптическое усиление рентгеновского изображения и рентгенотелевидение.

Применяют этот метод после рентгенографии по определенным показаниям: с его помощью проводят контроль во время производства прицельных снимков, рентгенобронхологических, ангиографических, бронхографических исследований и фистулографии: используют для выявления свободно перемещающейся жидкости в плевральной полости, для установления подвижности патологических образований и их связи с грудной стенкой и органами средостения, для определения подвижности диафрагмы и состояния плевральных синусов.

Рентгеноскопия необходима для проведения проб с повышением и понижением внутригрудного давления (пробы Вальсальвы и Мюллера, симптом Гольцкнехта - Якобсона). Документация результатов этих проб может быть сделана с помощью видеозаписи и рентгенокиносъемки.

Ангиопульмонография . Под этим термином понимают рентгенологическое исследование легочной артерии и ее ветвей с введением контрастного вещества. Существуют две основные методики ангиопульмонографии - общая и селективная.

При проведении общей ангиопульмонографии контрастный раствор вводят через катетер в вену руки, в верхнюю полую вену или в правые полости сердца. Рентгеновские снимки производят серийно на специальном этнографическом аппарате.

Общая ангиопульмонография требует значительного количества контрастного вещества (50-60 мл) и обычно не обеспечивает четкого изображения легочных сосудов, особенно при патологических изменениях в легких. Ампутация сосудов не всегда отражает их истинное состояние.

Селективная ангиопульмонография технически хотя и сложнее, чем общая, но используется чаще. Ее осуществляют после катетеризации правых предсердия и желудочка сердца и соответствующей ветви легочной артерии. Серийные снимки делают после введения 10-12 мл раствора контрастного вещества. Изображение сосудов получается четкое.

Обычно селективную ангиопульмонографию сочетают с регистрацией давления в малом круге кровообращения и исследованием газов крови.

Показания к ангиопульмонографии ограничены. Ее применяют для диагностики тромбоза и эмболии легочной артерии, а также для выяснения способности к расправлению длительно коллабированного легкого: по состоянию сосудов судят о степени пневмофиброза.

Современные технические возможности позволяют выполнять общую ангиопульмонографию в виде числовой, или дигитальной, ангиопульмонографии. Ее осуществляют с помощью введения в вену небольшого количества контрастного вещества. При этом компьютерная обработка видеосигналов позволяет получать высококачественные снимки.

Бронхиальная артериография . Метод заключается в катетеризации, контрастировании и рентгенографии бронхиальных артерий и их ветвей. Исследование проводят под местной анестезией и контролем рентгенотелевидения.

Специальной иглой с мандреном пунктируют бедренную артерию ниже паховой складки. Мандрен заменяют металлическим проводником, по которому в просвет артерии вводят рентгеноконтрастный катетер с изогнутым концом. Затем проводник извлекают, а катетер проводят в аорту.

Кончиком катетера последовательно отыскивают устья бронхиальных артерий и вводят в них катетер, а затем - контрастное вещество (урографин, уротраст или их аналоги) со скоростью 35 мл, с в количестве 5-12 мл. Производят серийную рентгенографию.

Основным показанием к бронхиальной артериографии является легочное кровотечение неясной этиологии и локализации. В таких случаях на артериограммах могут быть выявлены расширение и патологическая извитость бронхиальных артерий, выход контрастного вещества за их пределы (экстравазация), очаговая или диффузная гиперваскуляризация, аневризмы бронхиальных артерий, их тромбоз, ретроградное заполнение периферических ветвей легочной артерии через артерио-артериальные анастомозы.

Противопоказаниями к исследованию являются тяжелый атеросклероз, тучность, выраженная легочно-сердечная недостаточность.

Осложнением бронхиальной артериографии может быть возникновение гематомы в области пункции бедренной артерии. Редким, но тяжелым осложнением является сосудистое поражение спинного мозга с нарушением функции нижних конечностей и тазовых органов. Профилактика осложнений обеспечивается строгим соблюдением методических и технических принципов исследования.

Бронхография . Контрастное рентгенологическое исследование бронхов осуществляется под местной анестезией в виде позиционной (ненаправленной) или селективной (направленной) бронхографии. При позиционной бронхографии катетер проводят в трахею через нос. Во время введения контрастного вещества придают оптимальное положение телу пациента.

Селективная бронхография основана на катетеризации исследуемого бронха. Для ее проведения применяют различные по конструкции катетеры и используют разные технические приемы.

Бронхографию больным проводят натощак. При значительном количестве мокроты предварительно осуществляется бронхоскопия для санации бронхиального дерева.

Для местной анестезии используют 10-15 мл 2 % раствора лидокаина. Мягкий катетер проводят через нос и под контролем рентгенотелевидения устанавливают в исследуемом бронхе.

Контроль осуществляют с помощью распыления порошка тантала или, чаще, водорастворимых препаратов, например 5-10 мл пропилйодона. После введения препарата больному предлагают резко выдохнуть и слегка покашлять. При этом контрастное вещество относительно равномерно распределяется по слизистой оболочке и обеспечивает контурное изображение стенок бронхов. Через 2-3 сут пропилйодон гидролизуется и без отделения свободного йода выводится из организма почками.

Проведение исследования под контролем рентгенотелевидения и с видеозаписью позволяет судить об эластичности и подвижности бронхиальных стенок.

Ранее бронхографию применяли широко. В настоящее время ее используют для выяснения наличия бронхоэктазов и определения их локализации и формы. Иногда ее применяют для. лучшей ориентировки при трансбронхиальной биопсии, а также при больших фиброзных изменениях, если другие методы не позволяют выяснить особенности патологии.

Основными противопоказаниями являются острые воспалительные процессы в органах дыхания, легочные кровотечения.

Плеврография . Рентгенологическое исследование контрастированной плевральной полости применяют главным образом у больных с эмпиемой плевры для уточнения границ гнойной полости.

Вначале производят плевральную пункцию и аспирируют плевральное содержимое. Затем под контролем рентгенотелевидения в плевральную полость вводят 30-40 мл теплого рентгеноконтрастного вещества (пропилйодон, урографин, верографин). Снимки делают в разных проекциях, меняя положение больного. После окончания исследования контрастное вещество с остатками плеврального содержимого отсасывают.

Фистулография . Метод используют для обследования больных с различными видами торакальных свищей, в том числе с торакальными и торакобронхиальными.

Свищевои ход заполняют рентгеноконтрастным веществом и затем проводят рентгенографию. В процессе исследования и после анализа снимков выявляют анатомические особенности свища, устанавливают его сообщение с плевральной полостью и бронхиальным деревом.

Перед фистулографией целесообразно с помощью зондирования установить направление свищевого хода. Контрастное вещество вводят в свищ шприцем под контролем рентгенотелевидения. Применяют йодолипол, масляный и водные растворы пропиолйодона. Рентгенограммы производят в нескольких проекциях.

В случае проникновения контрастного препарата в бронхиальное дерево получается ретроградная фистулобронхография. После окончания исследования препарат через свищ по возможности отсасывают, а больной должен хорошо откашляться.



Понравилась статья? Поделитесь ей
Наверх